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A B S T R A C T

We consider the problem of management of an aquatic invader

spreading in a lake system. We assume that each year the invader

can be removed from a certain proportion of invaded lakes, which

depends on the selected intensity of control. Control decisions are

generated and compared for an optimally controlled system and

for a static optimization across asymptotic steady states. Control

close to eradication of the invasive species is always optimal for

invasions with relatively high damages, low rates of density

dependent spread and/or low chance of additional random

introductions. Control to a highly invaded steady state is optimal

for those invasions with low relative damages, high chances of

random introduction and high levels of uncertainty in species

location. In all other cases the optimal outcome depends upon

initial conditions. Comparing the relative performance of the

optimally controlled system and the static optimization demon-

strates situations when the differences are small and when not.

When invasions are acted upon in their later stages and across

certain parameter combinations a static optimization provides a

reasonable approximation of an optimally controlled system. The

flip-side is that optimal policies directed at an invasion in its early

stages tend to provide significantly savings. The savings vary

across parameter combinations, yet in these situations little useful

insight will be generated without consideration of a dynamically

optimized system.
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1. Introduction

Economists have been studying the optimal management of biological nuisances for over three
decades. While the bulk of the research has focused upon policies to combat agricultural pests
Lichtenberg and Zilberman (1986), Archer and Shogren (1996), following Shogren (2000) there has
been an explosion of research into the more general question of the economics of invasive species,
extending the consequences of the pests beyond those in agriculture. Questions have emerged from
this recent work: what are the linkages and the feedback loops between economic activity and the
nuisance (Settle et al., 2002; Finnoff et al., 2005); what are the consequences of the nuisance (Pimentel
et al., 1999; Zavaleta, 2000); what are its population dynamics (Eiswerth and Johnson, 2002; Gutierrez
and Regev, 2005); what is its spatial spread (Sharov and Liebhold, 1998; Brown et al., 2002); what
strategies exist to direct at the problem (Leung et al., 2002; Olson and Roy, 2006); and what are the
enormous uncertainties inherent in each of these components (Olson and Roy, 2002; Horan et al.,
2002; Eiswerth and van Kooten, 2002). These problems also have an additional dimensionality that
policies in response to an invasive species can be directed at introductions (i.e. prevention) or at
established populations (i.e. control). While a complete consideration of all these questions typically is
beyond the scope of any single paper, to provide practical insight and be a contribution some care
must be taken in their inclusion to any research in this area.

In this paper we consider some of these themes jointly in the optimal management of an invasive
species following some initial introduction that is in the midst of a widespread dispersal. The research
is pertinent because many current invasions have already occurred, some causing extensive damages
to economic and ecological systems, and are spreading across large areas. Perhaps the best known
example of such an invader is the freshwater mollusk, zebra mussel (Dreissena polymorpha), which
currently costs US industries an estimated US$100 million per year (Pimentel et al., 1999). Zebra
mussels have spread rapidly across eastern North America1 and are currently spreading across inland
lakes and towards western river basins (Bossenbroek et al., 2001, 2007). The research is also useful to
policy makers because the framework developed captures some necessary realities of the problem yet
is basic enough to generate some analytical insight. It is also easily applicable using readily available
data, as demonstrated with an application to the spread of zebra mussels.

The framework we develop considers the management of a system of interconnected lakes subject
to nonindigenous species invasion. The invader may cause significant enough ecological and/or
economic damage to attributes of the lake network that some sort of policy intervention may be
warranted. In our model we simplify a complex stochastic process into a formulation that includes
important effects on average, or proportionately. This allows the restatement of a stochastic problem
in deterministic terms. The method permits the incorporation of intersecting biology and economics
at a large scale, and allows for analysis of their joint influence on decision making and optimal invasion
management.

In our model it is presumed that at least one lake has been invaded by the alien species with some
damages, and the possibility exists that it can spread to other lakes. Unlike Potapov et al. (2007) who
considered the optimal management of a spreading invader with strategies that worked only to slow
the spread (only delaying the timing of a fully invaded network), we consider management policies
which can not only slow the spread of the invasion, they are able to stop or reverse the process. For
simplicity these strategies are lumped into a single management variable coined control. This is
appropriate in cases of widespread invasions which may have already passed through the initial
introduction and establishment of the invader. A strategy of control presumes there is a current
nuisance to be controlled. Thus while this methodology may not be as appropriate for an ex ante
consideration of invasion prevention, it does appear appropriate for the reality facing many regions.
The method transforms a finite horizon problem into an infinite horizon problem and allows the
possibility of long-run equilibria (steady states) other than a fully invaded system. Nonetheless, even
with this refinement the transitional dynamics are complex, making a traditional analysis of the
problem using the maximum principle (Pontryagin et al., 1962) complicated.

1 http://cars.er.usgs.gov/Nonindigenous_Species/ZM_Progression/zm_progression.html.
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The roots of the problem are that the dynamics can result in multiple steady states. Classic work
(Davidson and Harris, 1981; Tahvonen and Salo, 1996; Rondeau, 2001) demonstrate methodologies
to determine the optimal steady state in dynamically optimized systems, all of which requires the
generation of a optimal transition path from specific initial conditions. In many problems this is an
onerous task. In comparison we present a simple methodology that provides some analytical results
and circumvents much of the complexity of a complete dynamic optimization. The turnpike
property of infinite horizon problems (Haurie, 1976) is exploited with a focus on a static
optimization across steady states. The methodology concentrates on the properties of the terminal
state and not on initial transients. The use of this simple approach is appealing to those interested in
providing clear and simple policy advice. Yet its use provides a trade-off in itself as it neglects an
optimization across the transitions from initial states to the steady state but allows a clear view of
the underlying characteristics of optimal long-run equilibria. Similar methodologies have been
employed in applied work (for example see Burnett et al., 2006). While the problem is
computationally simplified, a necessary question becomes what is lost? Finnoff et al. (2009)
considered this comparison for a simple case of linear dynamics. They demonstrated that the
simple approach always wastes some resources but the waste tends to be small. The waste is least
for quickly spreading invasions, low rates of growth in marginal damages and high rates of growth
in marginal costs. However, the assumption of a linear invasion process is at odds with ecological
theory (Carpenter et al., 1999) and omits several of the most critical features of an invasion process
to make the findings limited in scope.

Here we consider the management of a system subject to invasion from both dynamic and static
perspectives. For either there is the possibility of multiple equilibria, the optimality of which may
depend on initial conditions. A comparative benchmark with two stable steady states, one close to
eradication and one close to complete invasion is used to illustrate the importance of key parameters
through relative comparisons. While making general statements in this setting is problematic, for the
situation considered it is shown that stringent control close to eradication of the invasive species is
optimal for invasions with relatively high damages, low rates of density dependent spread and low
chance of random introduction. Invasions that should be optimally controlled to a highly invaded
steady state are those with low relative damages, high chance of random introduction and high levels
of uncertainty in species location.

If the invasion has control policies initiated early in the invasion process then those with moderate
to high rates of density dependent spread and low to moderate levels of uncertainty in species location
should be optimally controlled close to eradication. If control policies are initiated later in the invasion
process, the system should be controlled to a highly invaded steady state for invasions with moderate
relative damages, moderate to high rates of density dependent spread, moderate chance of random
introduction, and low to moderate levels of uncertainty in location of the invader.

In comparing optimization procedures, as expected dynamically optimal management always
outperforms static management but there are situations when the differences are small. The
differences are always small when the influence on the invasion process of density dependent spread
is high and there is a high chance of the invader being randomly introduced throughout the system.
Moreover, the differences are also small when invasions are acted upon in their later stages (i.e. high
initial conditions) in situations when damages are relatively low, when the influence on the invasion
process of density dependent spread is low, and when there is a low degree of uncertainty in the
location of the invader. The flip-side is that optimal policies directed at an invasion in its early stages
tend to provide significant savings. These savings are greatest when relative damages are low, the
influence of density dependent spread is low and there is a high degree of uncertainty of the invaders
whereabouts. Optimal policies directed at an invasion detected in its later stages with high relative
damages will also provide significant savings. In these situations little useful insight will be generated
without consideration of a fully optimized system.

To generate the comparison the problem is developed from both dynamic and static perspectives.
Following some basic qualitative insights for both, each is applied (loosely) to the spread of zebra
mussels across Wisconsin lakes. Numerical simulations are used to find the solutions to each problem
across numerous variations in key parameters that characterize invasion processes. These solutions
are compared and contrasted, and conclusions generated.
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2. Dynamics of a spreading invader

The invasion process is modeled for the case of a network of interconnected lakes. An alien species
has been introduced into one or several lakes, has become established and has started to spread to
other lakes in the region. There are two main vectors of spread: spread due to ‘‘internal’’ factors within
the system (dependent on the extent of the invasion i.e. movement via the natural mobility and
migration of the species and/or ‘‘hitch-hiking’’ on human transportation within the system) and
spread due to factors ‘‘external’’ to the system (such as the random chance the invader is introduced at
any uninvaded point in the network). It is precisely this specification that differentiates an invasion
process from a standard model of renewable resources. A standard model of renewable resources
would not account for random introductions (when the initial conditions are absent of the invader)
and neglect one of the more interesting aspects of the problem.

It is possible to derive a model of the spread of the invader if the total number of lakes N is assumed
to be sufficiently large that it is possible to characterize the invasion process by a single variable, the
proportion of lakes invaded p (invaded lakes NI divided by all lakes, p=NI/N). It is also necessary to
assume there are enough lakes such that the change of p with time may be reasonably approximated
by a continuous and differentiable function p(t).

For the portion of the spread attributable to internal factors of the system, the average number of
invader propagules that can be transported from any invaded lake to any given uninvaded lake per
unit time (intensity of propagule transport) is assumed to be constant and given by A1. For an
increment of time Dt the mean number of propagules transported from each of the NI invaded lakes to
any other given lake is given K=NIA1Dt. According to Jerde and Lewis (2007), the probability of a lake
becoming invaded after arrival of K propagules is PI =1�exp(�vK), where v characterizes the species
invasibility. For small Dt approximately PI ¼ 1� expð�vNIA1 DtÞ � vA1NI Dt: The mean number of
lakes that become invaded due to internal spread during Dt is DNI ¼ PNR, where NR ¼ N � NI is the
total number of uninvaded lakes. Then

DNI ¼ NIðN � NIÞvA1 Dt: (1)

Dividing through by N, substituting for D p ¼ DNI=N, NI =Np, and DNI =NDp allows Dp to be derived
as

D p ¼ A pð1� pÞDt; A ¼ vA1N; (2)

where A can be interpreted as the rate of spread attributable to internal factors (such as density
dependent growth in the familiar case of logistic growth). Relying on the assumption that p(t) is
differentiable and Dt being sufficiently small, internal spread of the invader as represented by the
internal invader flow from lake to lake can be represented by proportion of invaded lakes over time2

ṗ ¼ A pðtÞð1� pðtÞÞ: (3)

In the context of metapopulation dynamics, this equation is equivalent to standard Levins model
(Levins, 1969).

It is also possible for the invader to spread due to external factors such as random introductions or
background propagule pressure, b>0. The magnitude of this depends upon the area uninvaded,
ð1� pðtÞÞ. Extending (3) to consider this case of external flow of the invader finds the equation of
motion for the spread of the invader without human intervention as

ṗ ¼ A pðtÞð1� pðtÞÞ þ bð1� pðtÞÞ; A>0; b>0; pð0Þ ¼ p0: (4)

The last term bð1� pðtÞÞ describes invasion spread due to external flow of the invader.
Human intervention in the invasion process is a program of control at invaded lakes which simply

serves to reduce the proportion of lakes invaded (i.e. through local eradications).3 The effort that can
be allocated for control is taken to be limited in the sense that there is a maximum control intensity

2 Time derivatives are indicated by ‘‘dot’’ notation, i.e. d p=dt ¼ ṗ.
3 In contrast (Potapov et al., 2007) considers interventions in human mediated transport between lakes.
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per single lake, and maximum total control effort for the whole system. Let the control rate denoted by
H(t) and depend on both p(t) and the amount of control effort h̃ðtÞ per unit time directed towards the
invader. When implemented, H(t) effectively reduces invader abundances and directly reduces the net
change in proportion of lakes invaded, reducing p(t). In this we assume away the irreversible nature of
some invasions (for example see Potapov et al., 2007 where the spread can only be slowed, not stopped
or reversed). The productivity of control effort is assumed to diminish towards zero as p!0 by the
function pðtÞ=ðaþ pðtÞÞ so that the control rate is

bh̃ðtÞ pðtÞ
aþ pðtÞ ¼

hðtÞpðtÞ
aþ pðtÞ ¼ Hð pðtÞ;hðtÞÞ; (5)

where b is control efficiency and hðtÞ ¼ bh̃ðtÞ is effective control effort, measured in the units of
control rate. For the sake of brevity below h(t) is referred to as ‘‘control effort’’. Function (5) arises
naturally if one assumes a small uncertainty regarding whether the lakes are invaded or not (i.e.
detection uncertainty). Then the effort is applied to the additional proportion a�1 of lakes. Hence the
effort applied to invaded lakes would be h(t) times the ratio pðtÞ=ðaþ pðtÞÞ. Note that this function
guarantees nonnegativity of p, since Hð0;hÞ ¼ 0.

With effort expended on an control program, (4) is thereby modified to become

ṗ ¼ ðA pðtÞ þ bÞð1� pðtÞÞ � hðtÞ pðtÞ
aþ pðtÞ ¼ Fð pðtÞ;hðtÞÞ; (6)

A>0, b>0, p(0)=p0.

3. Decision model

Let there be a resource manager charged with making choices/policies to maximize the net benefits
associated with managing the lake network. The invader reduces the gross social benefits of all
watersheds and causes environmental damages. To provide an analysis with as an insightful a
message as possible we implement a common restriction over social benefits and environmental
damages. Both are assumed to be enumerable, proportional to the total number of uninvaded and
invaded lakes, and to have constant per unit valuations. The point is that the resource manager’s
objective is to maximize the benefits of the network net of the costs of environmental damages and
costs of control by choosing the proportion of lakes to clean up. There is no locational specificity
between invaded lakes and the manager is indifferent between them in the application of control.

Within these definitions, let the value of an uninvaded lake per unit time be constant and given by
wU . Similarly, let the value of an invaded lake per unit time be constant and given by wI . The invader is
assumed to cause damages such that wU >wI . In the proportional framework employed herein the
average or expected value of the system at any time t is

ð1� pðtÞÞwU þ pðtÞwI: (7)

It is useful to notice that only the difference in value between invaded and uninvaded lakes

g ¼ wU �wI; (8)

influences changes in the expected value (7).4

The manager’s control variable is (effective) control effort h(t). While providing benefits as it
reduces p, this is a costly strategy according to the convex cost function C(h(t)), C0(h(t))>0, C00(h(t))>0.
Social welfare W(t) is defined by the expected net benefits of the lake network

W ¼ wU � pðtÞg � CðhðtÞÞ: (9)

We assume that the cost function is zero with zero effort (Cð0Þ ¼ 0).

4 There are consequences of assuming g to be constant but these are deemed acceptable given the clear interpretation of the

parameter and its potential ease of collection.
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3.1. Optimal management

Optimal management is achieved by the resource manager choosing h to maximize the discounted
stream of social welfare

J½h� ¼max
h

Z 1
0

e�rtWðtÞdt; (10)

where r is the discount rate. In the development of the method, it is useful to note that instead of
maximizing W (9) one can minimize the associated expected invasion costs

J½h� ¼min
h

Z 1
0

e�rtðpðtÞg þ CðhðtÞÞÞdt; (11)

The solution to (11) is referred to as the ‘‘optimal program’’ and is given by an optimal path to the
terminal steady state. The optimal controls on this path minimize the total discounted cost of bringing
the system to the steady state for any p0. Optimal controls for minimizing J can be obtained by the
maximum principle (Kamien and Schwartz, 1991). The procedure follows from writing the current
value Hamiltonian (omitting time notation)

H ¼ � pg � CðhÞ þm ðA pþ bÞð1� pÞ � h p

aþ p

� �
; (12)

where m is the costate variable (shadow price of the spreading invader). As costs are at their lowest
when p=0, m�0. m should satisfy

ṁ ¼ rm� @H
@p
¼ rm� �g þm A� 2A p� b� ah

ðaþ pÞ2

 !" #
; (13)

and the evolution of the state given by (6). For the optimal h, H has to reach its maximum for each t,
hence

@H
@h
¼ �C0ðhÞ �m

p

aþ p
¼ 0; (14)

it follows that m ¼ �C0ðhÞ½ðaþ pÞ=p�.5

3.1.1. Optimal solutions

The solution to the problem is tricky and is helped by assuming a functional form for C(h).
Employing a quadratic form of CðhÞ ¼ ðc=2Þh2, c>0 relates how marginal costs grow with h. Time
differentiating (14) with this substitution, employing (13) and (6) finds

ḣ ¼ � g

c

p

aþ p

� �
þ h r � ðA� 2A p� bÞ þ a½A� A pþ ðb= pÞ � b�

aþ p

� �
; (15)

which provides the necessary changes in control effort through time along an optimal path.
Eqs. (6) and (16) form a dynamical system in p�h space. To diagrammatically consider the

extremal dynamics, Eq. (6) provides the ṗ ¼ 0 isocline (the invasive species equilibrium condition) as

h ¼ ðaþ pÞðA pþ bÞð1� pÞ
p

; (16)

5 The model is nonconvex and similar to a class of problems such as those considered by Tahvonen and Salo (1996), Rondeau

(2001) and Horan and Bulte (2004). As demonstrated throughout this work, multiple equilibria are common in these problems

and sufficiency conditions have to ‘‘checked’’ on a case by case basis. The method elegantly documented by (Rondeau, 2001) is

applied in this paper.
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The control isocline ḣ ¼ 0 is found from Eq. (15)

h ¼ r � ðA� 2A p� bÞ þ a½A� A pþ ðb=pÞ � b�
aþ p

� ��1 g

c

p

aþ p

� �
; (17)

Both (16) and (17) are highly non-linear making the possibility of numerous steady states likely
and analytical solutions unlikely. To generate phase diagrams a comparative benchmark parameter
set was constructed for an application of the zebra mussel spread across lakes in Wisconsin and is
detailed in Appendix A sketch of the phase diagram for the comparative benchmark is given in Fig. 1
and is similar to Fig. 3 in Tahvonen and Salo (1996) in that it provides general principles for many other
topologies that could occur.

The comparative benchmark consists of two saddle point steady states (one at low levels of
invasion at (pL, hL) and one at high levels of the invasion at (pH, hH)) that lie on either side of an unstable
focus (moderate level of invasion (pM, hM)).6 The directions of movement follow from (6) and (15) and
optimal paths (dashed lines with arrows) sketches of solutions generated in a discrete version of the
model.7

Which steady state and path are optimal depends upon the initial conditions p0. For an invasion
detected in its early stages ( p0 ¼ pe

0 < pM) the optimal path directs the system to the low steady state
ð pL;hLÞ. For invasions detected in their later stages ðp0 ¼ pl

0 > pMÞ the system is optimally controlled
to arrive at the high steady state (pH, hH). In the immediate neighborhood of (pM, hM) there is a
threshold in the optimality of either stable steady state. Rondeau (2001) and Tahvonen and Salo
(1996) elegantly demonstrated methods to assess which steady state would be optimal in the vicinity
of such thresholds but the tact employed here was more brute force: across a range of initial
conditions in this region the model was run repeatedly to narrow down the range to arrive at the

Fig. 1. Multiple steady states and optimal paths.

6 Using the data in the comparative benchmark the Eigenvalues of the low and high steady states invasion are real and of

alternating sign, while the Eigenvalues of the intermediary steady state are complex with positive real parts. The intermediary

steady state corresponds to a ‘‘Skiba’’ point although we were unable to derive this analytically.
7 Mathematica version 7.0 was employed to determine all candidate steady states. Optimal paths to steady states were found

in GAMS using the CONOPT solver from the same initial conditions, across all parameter variations. In addition to the results

presented in the paper we re-ran the model across a wide range of initial conditions to check the instability of the ‘‘Skiba’’ point.

D. Finnoff et al. / Resource and Energy Economics 32 (2010) 534–550540



threshold (approximately (pM, hM)). Initial conditions that result in optimal paths converging to pL (i.e.
those for pe

0 < pM) have lower cumulative costs J than those that converge to pH (i.e. those for pl
0 > pM).

Alternative topologies that relate to the specific characteristics of invasion processes can be seen by
variations in g/c, A, b, and a. An application of the Implicit Function theorem to the steady state
expressions of (6) and (15) provides intractable results for comparative statics on the steady states.
Without analytical results a numeric comparison was made to the benchmark. Each of these
parameters was varied above (by five times) and below (to one-fifth) its benchmark value so that for
each parameter there are low values (subscript LV) and high values (subscript HV) in addition to the
benchmark. Equilibrium values of the level of invasion and control effort over the three potential types
of steady state ((pL, hL), (pM, hM), and (pH, hH)) for each parameter variation are given in Table 1. Also
given in the table are the present value costs J (Eq. (11)) for optimal paths from initial conditions
( p0 ¼ pe

0; pl
0). As parameters are varied the shape of one or both isoclines can be altered, the number of

steady states can be changed, the location of steady states that exist can be shifted and control
patterns for optimal paths altered in turn.

The steady state influence of g/c (damages per growth rate of marginal costs) is obvious and only
influence the ḣ ¼ 0 isocline. Low relative damages make control effort for any level of p less
worthwhile, pivoting down the ḣ ¼ 0 isocline towards the horizontal axis and result in a single, highly
invaded equilibrium ð pH;hHÞ. High relative damages have the reverse effect and increase the value of
control effort. This pivots the ḣ ¼ 0 isocline upwards and towards the vertical axis, leaving only a
single, almost eradicated equilibrium.

The effects of spread parameters are not so obvious. Fig. 2 shows that high levels of AHV (high degree
of internally driven/density dependent spread) serve to increase the curvature of both isoclines. The
peak in the ṗ ¼ 0 isocline is ‘‘pulled’’ up and two discontinuities introduced to the ḣ ¼ 0 isocline.8 The
result is that the low invasion steady state declines (p moves closer to the origin and eradication as h

rises) and the highly invaded steady state moves closer fully invaded (p rises towards 1 as h declines).
The two saddle points and the unstable focus remain but have diverged in their relative position. The
intuition is that if the invader is spreading very quickly in a density dependent fashion, there is only a
narrow range of very early detection levels at which it is optimal to control it at a high rate and ‘‘pin’’
the invasion at a very low level. If this type of invasion is detected at any other initial condition (i.e.
p0 > pL;AHV

) then invader spreads so quickly that it is optimal for the manager to almost give up and
only lightly control the invasion to an almost fully invaded steady state.9

Low A (omitted from the figure) brings the peaks and troughs of each isocline together (reduced
curvature in relation to the benchmark) which makes the two saddle points converge into a single
saddle point at a rather moderate level of invasion. In this case the invader is spreading slowly enough
that a relatively low level of control is able to hold the invader at a moderate level. Thus while damage
costs are higher than an eradication equilibrium, control costs are so much lower that it is optimal to
allow the invader to spread a bit and pin it at a moderate level.

Table 1
Equilibrium states pi, controls hi and present value costs J across parameter variations.

Equilibrium pL hL J p0¼ pe
0

pM hM pH hH J
p0¼ pl

0

Parameter

Benchmark 0.0520 0.0109 38 0.2169 0.0113 0.7232 0.0068 172
g
cLV

12 0.9611 0.0011 36
g
cHV

0.0130 0.0117 54 533

ALV 0.2062 0.0087 34 157

AHV 0.0159 0.0128 52 0.3539 0.0295 0.9772 0.0025 194

bLV 0.0064 0.0028 3 160

bHV 131 0.9509 0.0034 189

aLV 0.0194 0.0104 34 0.2365 0.0113 0.7207 0.0068 172

aHV 45 0.7346 0.0066 172

8 With ḣ ¼ 0 for AHV in the interval 0.02<p<0.3 the function is negative, positive for the rest of p.
9 We appreciate invaluable comments by Rick Horan’s on this point.
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The greater the chance of random introduction (high b) reduces the density dependent spread effect
and increases the rate of spread significantly. In the p� h space, higher b causes the ṗ ¼ 0 isocline to
pivot upwards on the h-axis and to have less of the ‘‘S’’ bend. The ḣ ¼ 0 isocline loses a pronounced peak
and pivots downward. The shifts push the (single) steady state close to a fully invaded system as shown
in Table 1. The greater the external flow into the system the less useful is a long-run control strategy.
Changes for lower b are in reverse, with the clear importance of the control strategy (given relatively high
influence of density dependent spread) holding the invasion at a low level.

Increased detection uncertainty reduces the curvature of each isocline, moving the low saddle
point (pL) towards the high saddle point (pH, converging for aHV). Higher levels of uncertainty in the
presence/absence of the invader make control effort on average less effective across the system. This
makes the highly invaded steady state pH the only long-run outcome at high levels of a.

Optimal paths associated with the parameter variations follow those of the comparative
benchmark in cases with three steady states (AHV and aLV). In these cases, when the invasion is
detected in its early stages ð pe

0Þ then the system is optimally controlled to converge to the lower steady
state (pL, hL). If the invasion is detected in its later stages ð pl

0Þ the optimal path converges to the highly
invaded steady state (pH, hH).

With parameter variations that result in only a single saddle point initial conditions do not
influence the terminal state. Control of the invasion process to (pL, hL) will be optimal for invasions
with g/cHV ALV and bLV. Invasions that should be controlled to (pH, hH) are those with g/cHV, bHV, and aHV.
When the total costs J (net present value, Eq. (11)) of these steady states and their transition paths are
compared what becomes clear is that higher levels of each key characteristic lead to invasions that
have higher total costs. In addition, invasions that are detected (or acted upon) in their later stages end
up costing significantly more than those detected early. The most costly/worst situations are those
when an invasion is detected late in its spread and has very high relative damages (g/cHV) or high
density dependent spread (AHV). In all cases early detection and action would save a significant
amount of resources.

3.2. Static management

Deriving the optimal program of management was difficult, requiring a solid grounding in
differential equations, control theory, and methods of numeric simulation. In comparison we offer a

Fig. 2. Isoclines for variations A.
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less computationally intense program of static management that implicitly analyzes the problem by
exploiting the properties of infinite horizon problems. With this class of problems, the optimal
trajectory has to end at a steady state, where p and h do not depend on time. Neglecting the initial
transients and focusing on just the steady states, it is possible to consider W(t) as time-independent so
that social welfare is simply

S½h� ¼max
h

W

Z 1
0

e�rtdt ¼ r�1W : (18)

The solution of this problem is straightforward as it is a static optimization across possible steady
states to find the one with minimum costs into perpetuity. The problem then is to find pS, hS such that
discounted welfare S is maximized.

The first step is to derive the static steady states. They are the roots of the equation resulting from
(6) when ṗ equals zero, as given by the ṗ ¼ 0 isocline (Eq. (16)). The equation is cubic, making an
explicit solution impossible. It is only possible to state that it may have from 1 to 3 roots on [0,1].
Substituting (16) for h(p) into W

Wðp;hð pÞÞ ¼ � pg � c

2

ðaþ pÞðA pþ bÞð1� pÞ
p

� �2

; (19)

has a first order condition

dW

d p
¼ �g � c

ðA� aA� bÞp2 � 2A p3 � ab

p2

� �
¼ 0; (20)

and second order condition

d2W

d p2
¼ �c

�2A p4 þ 2ab p

p4

� �
¼ �c �2Aþ 2ab

p3

� �
<0; (21)

that requires �2Aþ 2ab=p3 >0 or ab=p3 >A. Each solution of (20) corresponds to a fixed level of pS

and so hS as given in Table 2. The present value of total management costs are also given in the table
and calculated for initial conditions ð p0 ¼ pe

0; pl
0Þ. These include costs of transition and those incurred

at the steady states over an infinite horizon (denoted by JS).
In each case with multiple solutions, the solution with the smallest p yielded the smallest

instantaneous steady state cost W but not necessarily smallest present value cost JS from the early and
late initial conditions. Comparing Tables 1 and 2 shows the potential for similar outcomes, and those
that significantly diverge. Consider the benchmark with two stable steady states ðpL;hLÞ and ð pH;hHÞ
under optimal management and a single steady state ðpS

L;h
S
LÞ in the static case. The static steady state

level of invasion is less than optimal ( pS
L < pL) and control more than optimal (hS

L >hL). These
relationships are maintained across all stable steady states if r>0, and is analytically demonstrated by
Finnoff et al. (2009) in a linear model.

Table 2
Static equilibrium states pS

i , controls hS
i and present value costs JS across parameter variations.

Equilibrium pS
L hS

L JS
p0¼ pe

0
pS

M hS
M pS

H hS
H JS

p0¼ pl
0

Parameter

Benchmark 0.0226 0.0111 42 177
g
cLV

0.0370 0.0109 38 0.3994 0.0109 0.9111 0.0025 37
g
cHV

0.0115 0.0119 55 722

ALV 0.0280 0.0105 38 159

AHV 0.0133 0.0129 53 0.5040 0.0345 0.9702 0.0032 194

bLV 0.0055 0.0029 4 170

bHV 132 0.9279 0.0015 190

aLV 0.0098 0.0105 36 176

aHV 0.0539 0.0124 55 181
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Static management primarily targets (almost) eradicated steady states. Only with a very high
chance of random introduction (bHV) is the highly invaded steady state a sole maximum under static
management. However the influence of key parameters for static management follows that of optimal
management. The comparative static effects of variations in underlying parameters can be determined
through an application of the Implicit Function Theorem on Eq. (20). Higher damages per growth in
marginal costs g/c lowers pS

@ pS

@ðg=cÞ ¼ �
�1

�cð�2Aþ ð2ab=p3ÞÞ <0; (22)

while the influence of A on PS is

@pS

@A
¼ � 1� a� 2 p

�cð�2Aþ ð2ab=p3ÞÞ 5 0; (23)

and depends on the magnitude of pS. For large pS (i.e. a highly invaded steady state) an increase in A

increases pS. For small pS an increase in A lowers pS. These are the same effects as shown in Table 1 for
optimal management.

In the same fashion it can be shown that

@pS

@b
¼ � ð�1� ða= p2ÞÞ
�cð�2Aþ ð2ab=p3ÞÞ >0; (24)

and

@pS

@a
¼ � ð�A� ðb= p2ÞÞ
�cð�2Aþ ð2ab=p3ÞÞ >0; (25)

also following Table 1. While the steady states from static management will not coincide with those of
optimal management (as long as r 6¼0) the implications of variations in invasion characteristics are
maintained.

However there are differential dynamic consequences. Whether or not the static equilibrium is
attainable or not depends upon the initial conditions. Fig. 3 illustrates the benchmark phase-plane for
the optimal and static solutions. The single benchmark equilibrium ðpS

L;h
S
LÞ from Table 2 corresponds

to the furthest left intersection of hS and the ṗ ¼ 0 isocline at pS.10 This point lies to the left (lower p)
and above (higher h) than the low optimal equilibrium ð pL;hLÞ at the left most intersection of the two
isoclines.

The static rule over applies control (at constant levels hS for both initial conditions) in relation to
the optimal steady state controls (for both initial conditions) but the consequences depend on the
initial conditions. In this benchmark case with initial condition pe

0 the steady states are relatively close
yet the transition paths very different. The optimal path initially employs a very low level of control (in
relation to hS) that rises to stop the invasion at pL. With an invasion detected in its later stages ( pl

0) the
realized steady state under static management is the furthest right intersection of hS with the ṗ ¼ 0
isocline. In this case the magnitude of the over employment of control is not as large but the realized
steady state is significantly less than optimal (although the realized steady state p0 ¼ pl

0 turns out to
be at a much higher level of invasion than the target steady state pS

L). This shifts costs away from
damages due to the invader to control costs. This may be appealing yet is not an optimal mix and
results in waste of resources.11

Just how much static management wastes depends not only on the differences in steady states, but
also on transitionary costs. To compare the relative performance of the two management strategies
the corresponding static problem was solved for each of the optimal problems (across parameter

10 The other intersections of hS and the ṗ ¼ 0 isocline do not satisfy the static first order condition 20 but in the dynamics are

potential (non-optimal) steady states.
11 It would of course be possible to get to pS

L on another path by varying control from hS , for example on a Most Rapid Approach

Path (MRAP). But this would require a more sophisticated decision making process than static management, making the extra

effort of optimal management worthwhile.
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variations and initial conditions).12 Total costs of static management always exceed those of
optimal management S> J, but in varying degrees depending on characteristic and initial
condition. To make the comparison clear the percentage difference in cost of static management S

over that of optimal management J (as a percentage of optimal costs ((S� J)/J)) were calculated and
shown in Table 3.

Table 3 demonstrates a great deal of variation in the relative performance of static management. In
relation to the benchmark as shown in Fig. 3, while the steady states are relatively close for an invasion
detected in its early stages ( pe

0) there is a greater difference in costs in comparison to detection in its
later states ( pl

0). This is due to differences in transition costs being larger at the start of the planning
horizon for pe

0 than those for pl
0. When the invader is detected in its early stages of spread the control

costs are much greater than those under optimal management (which are almost zero at pe
0 in the

Fig. 3. Optimal and static equilibria and paths.

Table 3
Relative differences in total costs.

Initial condition pe
0 pl

0

% Difference in Costs S�J
J

� �
S�J

J

� �
Parameter

Benchmark 8.9% 3.0%
g
cLV

201.2% 1.5%
g
cHV

0.9% 35.4%

ALV 13.9% 1.0%

AHV 2.8% 0.1%

bLV 3.4% 6.2%

AHV 0.5% 0.4%

aLV 3.6% 2.2%

aHV 21.5% 5.2%

12 Mathematica version 7.0 was employed to determine all candidate solutions and determine the global optimum. Paths to

steady states were then simulated in GAMS using the fixed level of hS and Eq. (6) from the same initial conditions, across all

parameter variations.
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benchmark). This large difference in control costs occurs close to the beginning of the planning
horizon and is not heavily discounted. If the invasion is detected in its later stages, static control is also
over applied, but not by such an extent (given the high levels of invader) and so the differences in costs
of management are less.13

Across the parameters, optimal management tends to outperform static management when
invasions are detected in their early stages ( pe

0) for similar reasons. The exceptions are for (g/c)HV and
bLV when the performance of static management is relatively worse with invasions that are detected in
their late stages ( pl

0). This is due to both steady states being nearly eradicated (pL) and the large
amount of p that has to be reversed from the high initial condition. In these cases the optimal path
applies control at a higher rate than the static rate until the steady state is attained and has a much
shorter time of transition. While the static level of control is low (and less costly) the transition is long
which allows high damages to persist and drive up static costs.

Static management performs relatively well for either initial condition when the rate of internal
spread is high (AHV), there is a high chance of random introduction into the system (bHV) and there is a
low amount of detection uncertainty (aLV). In each of these cases the static and optimal steady states
for both initial conditions are relatively close and transition paths similar. The relative performance of
static management in other cases depends on initial conditions and the differences in steady states.

Fig. 4 illustrates the variance in differences for the case of g=cLV .
There is only a single steady state for optimal management ð pH;hHÞ at the intersection of the

isoclines as given in Table 1. Static management has three possible solutions, the two relevant shown
in the figure by dashed lines (hS

L and hS
H). For an invasion detected early ( pe

0) static management would
target ð pS

L;h
S
LÞ given by the upper left intersection of the light dashed line and the ṗ ¼ 0 isocline. The

static steady state is almost eradicated while the dynamic is almost fully invaded. The constant level of
static control is much greater than the optimal level of control (which first rises with the invader and
then decreases gradually to a level a tenth of the static level). Under static management the system is
directed to a steady state very different than optimal and coupled with large initial cost differences the
relative performance is poor.

For an invasion detected in its later stages ( pl
0) static management would target ð pS

H;h
S
HÞ or the

lower right intersection of the heavy dashed line and the ṗ ¼ 0 isocline. Here the differences between
the two steady states are not nearly as large nor are the differences in transition paths (where the

Fig. 4. Static and dynamic equilibria for g/cLV.

13 Differences at the beginning of the planning horizon influence the present value of costs by a much greater extent than those

at the end of the planning horizon, placing a greater weight on differences in transition costs than steady state costs if transition

times are lengthy.
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optimal path follows that of the low initial condition but is drawn slightly below to differentiate it in
the figure) with more similar costs.

In summary, by definition optimal management always outperforms static management, but
there are situations when the differences are small. If invasions are detected early in their
progression, on average optimal management can provide significant savings while static
management performs reasonably well when invasions are detected and acted upon in their later
stages. But there is so much variability in the relative performance of static management that
prescriptions by characteristic and initial conditions are likely to be of more use than sweeping
generalities.

The specification of a more realistic invasion process over (Finnoff et al., 2009) provides significant
insight. Making a differentiation between internally motivated (density dependent) and externally
motivated (random introductions) spread has important implications, namely that across a wide
range of density dependent spread rates invasions detected early in their progression should all be
optimally managed. But across this same range if the invasion is detected in its latter stages static
management will provide a close approximation. However, when external inputs to spread are an
important driver of the invasion process, optimal management provides less of an improvement over
static management. Taken together, these components of the spreading process can work to alleviate
the other, making generalizations tricky. What can be said is that if internal factors are more relatively
important than external, and the invasion is detected early, optimal management will be clearly
superior. The opposite holds if external factors are dominant, and static management provides a close
approximation.

Another important differentiation is the inclusion of some uncertainty in the specific location of the
invader. When this uncertainty is low, static management and its implications provide a reasonably
close approximation of optimal management. However, when this uncertainty is high, optimal
management will provide significant savings over static management.

4. Conclusion

Invasive species pose an interesting problem from an economic point of view as there are certain
characteristics of the problem that differentiate it from a standard question in the management of
renewable resources. Here we consider the effect of characteristics specific to a simple invasion
process and the implications of these characteristics on management of the system from both
dynamic and static perspectives. Results indicate that stringent control of the invasion process close to
eradication is optimal for relatively high damages, low rates of density dependent spread and low
chance of random introduction. Invasions that should be controlled to a highly invaded steady state
are those with low relative damages, high chance of random introduction and high levels of
uncertainty in species location.

If the invasion has control policies initiated early in the invasion process then those with moderate
to high rates of density dependent spread and low to moderate levels of uncertainty in species location
should be controlled close to eradication. If control policies are initiated later in the invasion process,
the system should be controlled to a highly invaded steady state for invasions with moderate relative
damages, moderate to high rates of density dependent spread, moderate chance random introduction,
and low to moderate levels of uncertainty in location of the invader.

In comparing optimization procedures, as expected dynamically optimal management always
outperforms static management but the differences are small when there is a high degree of density
dependent spread and/or there is a high chance of the invader being randomly introduced throughout
the system. The differences are also small in most cases when invasions are acted upon in their later
stages (i.e. high initial conditions) when damages are relatively low, when the influence on the
invasion process of density dependent spread is low and when there is a low degree of uncertainty in
the location of the invader. In these situations some useful insights can be derived without having to
fully characterize the optimization of the initial transients of the dynamical system. This is of practical
use as it allows a clear and concise view of the long-run equilibrium and the influence of critical
parameters on this state, uncluttered by the complexity of a optimal characterization of the initial
transients.

D. Finnoff et al. / Resource and Energy Economics 32 (2010) 534–550 547



The flip-side is that optimal policies directed at an invasion in its early stages tend to provide
significantly savings. These savings are greatest when relative damages are low, the influence of
density dependent spread is low, and there is a high degree of uncertainty of the invaders
whereabouts. In these situations little useful insight will be generated without consideration of a fully
optimized system.

While our results are intuitively plausible, our mathematical formulation and analysis has allowed
us to generate specific policy prescriptions that can be applied to invasion problems such as zebra
mussel. Our model is necessarily simplistic, as our goal has been to outline the basis principles of
optimal application of control effort. More realistic models would include the cost of monitoring lakes
for invasion status, and alternate strategies such as treating boats before they enter uninvaded lakes
after they leave infected lakes (Potapov et al., 2007).
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Appendix A

A.1. Application data

To generate phase diagrams for several interesting cases a comparative benchmark parameter set
was constructed for an application of the zebra mussel spread across lakes in Wisconsin. The primary
vector of long distance zebra mussel dispersal is from the transportation of recreation and fishing
boats (Johnson et al., 2001). Let the mean boat traffic between two lakes be denoted by T, and the mean
number of mussels transported by one boat by h. Then the intensity of the mussel transport A1 ¼ hT .
According to (2), A ¼ vA1N ¼ vhTN, where v characterizes the invasibility of the invader and N is the
number of lakes in the system that are attracting for boaters. We can estimate T by dividing the total
boat traffic within the lake system Ttot by the number of lake pairs NðN � 1Þ � N2, so T � Ttot=N2. The
values of v and h are unknown. However we can estimate their product using the ‘‘colonization
threshold’’ T0 introduced in Bossenbroek et al. (2001). For the intensity of boat traffic less or equal to
T0 =850 boats/year the probability of lake invasion PI is between 0 and 20% for the period since the
beginning of the mussel spread. We take the medium value PI =0.1. This result was related to a time
interval between 5 and 10 years: the study was done in 1999, the spread of zebra mussels started
around 1988, and some time could be expected to be required for the propagule pressure on the lakes
to form. Taking the time interval tI =5 years, we obtain that

PI ¼ 1� expð�vhT0tIÞ; vhT0tI ¼ �lnð1� PIÞ � PI;

therefore

vh � PI

T0tI
:

Combining estimates for T and vh we come to.

A � PITtot

NT0tI
:

According to Buchan and Padilla (1999) there are 58,000 registered boaters in Wisconsin. However
about 90% of these boaters do not pull their trailers over long distances, and some of them do not
transfer the boat from lake to lake. On the other hand each boater may make several trips per year, and
the lake network can cover several states. It seems reasonable to estimate Ttot �105 boats/year. The
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number of lakes in the lake system that are of essential interest for boaters we take as N�102. Then for
the case of lakes in Wisconsin

A � 0:1� 105

102 � 850� 5
year�1 � 0:02 year�1:

An estimate for the background propagule pressure b in this setting can be found from the trailer
boat trips between two remote regions (assuming the regions are remote enough that the trips are not
part of internal spread). According to Fig. 3 in MacIsaac et al. (2004), only about 10% of boaters travel
distances more than 500km, which we can relate to the interaction between lake systems. Taking into
account a higher mortality rate for propagules on longer trips, in many cases it is reasonable to assume
that b is between 0.01A and 0.1A. However, in certain cases, b can be greater. For example, the
Michigan, Wisconsin, Illinois, Indiana and Ohio lake system considered in Bossenbroek et al. (2001)
have the invaded Great Lakes as its part or its neighbor. This may create a much higher propagule
pressure, comparable to A. For Wisconsin lakes b may therefore be big because of the proximity of the
Great Lakes, such that we take b ¼ 0:5A � 0:01 year�1.

For the necessary valuation data, in a study of the 2,072-acre Delavan Lake in Walworth County,
Wisconsin (Eiswerth et al., 2005) find that the removal of a restoration program for the lake would
result in a decline in water quality resulting in a reduction of regional expenditures close to $6 million
per year. In the absence of superior data we extrapolate from this estimate and let g � $6 million.
Without any control cost information, the value of c was calibrated to provide a comparative
benchmark with three steady states. A discount rate of r=3% was employed in the simulations.

References

Archer, D.W., Shogren, J.F., 1996. Endogenous risk in weed control management. Agricultural Economics 14, 103–122.
Bossenbroek, J.M., Kraft, C.E., Nekola, J.C., 2001. Prediction of longdistance dispersal using gravity models: zebra mussel invasion

of inland lakes. Ecological Applications 11 (6), 1778–1788.
Bossenbroek, J.M., Johnson, L.E. Peters, B., Lodge, D.M., 2007. Forecasting the expansion of zebra mussels in the United States,

Conservation Biology 21 (3), 800–810.
Brown, C., Lynch, L., Zilberman, D., 2002. The economics of controlling insect-transmitted plant diseases. American Journal of

Agricultural Economics 84, 279–291.
Buchan, L.A.J., Padilla, D.K., 1999. Estimating the probability of long-distance overland dispersal of invading aquatic species.

Ecological Applications 9, 254–265.
Burnett, K., Kaiser, B., Pitafi, B.A., Roumasset, J., 2006. Containment of invasive species: illustrations from Hawaii. Agricultural

and Resource Economics Review 35, 63–77.
Carpenter, S.R., Brock, W., Hanson, P., 1999. Ecological and social dynamics in simple models of ecosystem management.

Conservation Ecology 3 (2), 4 (online).
Davidson, R., Harris, R., 1981. Non-convexities in continuous-time investment theory. Review of Economic Studies 48, 235–253.
Eiswerth, M.E., Johnson, W.S., 2002. Managing nonindigenous invasive species: insights from dynamic analysis. Environment

and Resource Economics 23, 319–342.
Eiswerth, M.E., van Kooten, G.C., 2002. Uncertainty, economics, and the spread of an invasive plant species. American Journal of

Agricultural Economics 84 (5), 1317–1322.
Eiswerth, M., Kashian, R., Skidmore, M., 2005. What is the value of a clean and healthy lake to a local community? Prepared by

the Fiscal and Economic Research Center at the University of Wisconsin-Whitewater, http://www.wisconsinlakes.org/
AboutLakes/PDFs/DelavanLakeStudy.pdf.

Finnoff, D., Shogren, J.F., Leung, B., Lodge, D., 2005. The importance of bioeconomic feedback in invasive species management.
Ecological Economics 52, 367–381.

Finnoff, D., Lewis, M.A., Potapov, A.B., 2009. Second best policies in invasive species management: when are they ‘‘good
enough’’? In: Perrings, C., Mooney, H., Williamson, M. (Eds.), Bioinvasions and Globalization: Ecology, Economics,
Management, and Policy. Oxford University Press.

Gutierrez, A.P., Regev, U., 2005. The bioeconomics of tritrophic systems: applications to invasive species. Ecological Economics
52., 383–396.

Haurie, A., 1976. Optimal control on an infinite time horizon. The turnpike approach. Journal of Mathematical Economics 3, 81–
102.

Horan, R.D., Perrings, C., Lupi, F., Bulte, E.B., 2002. Biological pollution prevention strategies under ignorance: the case of
invasive species. American Journal of Agricultural Economics 84 (5), 1303–1310.

Horan, R.D., Bulte, E., 2004. Optimal and open access harvesting of multi-use species in a second-best world. Environmental &
Resource Economics 28 (3), 251–272.

Jerde, C.J., Lewis, M.A., 2007. Waiting for invasions: a framework for the arrival of non-indigenous species. American Naturalist
170 (1), 1–9.

Johnson, L.E., Ricciardi, A., Carlton, J.T., 2001. Overland dispersal of aquatic invasive species: a risk assessment of transient
recreational boating. Ecological Applications 11 (6), 1789–1799.

D. Finnoff et al. / Resource and Energy Economics 32 (2010) 534–550 549

http://www.wisconsinlakes.org/AboutLakes/PDFs/DelavanLakeStudy.pdf
http://www.wisconsinlakes.org/AboutLakes/PDFs/DelavanLakeStudy.pdf


Kamien, M.I., Schwartz, N.L., 1991. Dynamic optimization: the calculus of variations and optimal control in economics and
management. North-Holland, Amsterdam.

Leung, B., Lodge, D.M., Finnoff, D., Shogren, J.F., Lewis, M.A., Lamberti, G., 2002. An ounce of prevention or a pound of cure:
bioeconomic risk analysis of invasive species. Proceedings: Biological Sciences (formerly Proceedings Royal Society London
B) 269, 2407–2413.

Levins, R., 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of
the Entomological Society of America 15, 237–240.

Lichtenberg, E., Zilberman, D., 1986. The econometrics of damage control: why specification matters. American Journal of
Agricultural Economics 68, 261–273.

MacIsaac, H.J., Borbely, J.V.M., Muirhead, J.R., Graniero, P.A., 2004. Backcasting and forecasting biological invasions of inland
lakes. Ecological Applications 14, 773–783.

Olson, L.J., Roy, S., 2002. The economics of controlling a stochastic biological invasion. American Journal of Agricultural
Economics 84 (5), 1311–1316.

Olson, L.J., Roy, S., 2006. The Economics of Controlling a Biological Invasion. Working Paper, University of Maryland http://
www.wam.umd.edu/126houdini/cwp.html.

Pimentel, D., Lach, L., Zuniga, R., Morrison, D., 1999. Environmental and economic costs of nonindigenous species. in the United
States, Bioscience 50, 53–65.

Pontryagin, L.S., Boltyanskii, V.G., Gamkrelize, R.V., Mishchenko, E.F., 1962. The Mathematical Theory of Optimal Processes.
Wiley.

Potapov, A.B., Finnoff, D.C., Lewis, M.A., 2007. Optimal control of biological invasions in lake networks. Natural Resource
Modeling 20 (3), 351–379.

Rondeau, D., 2001. Along the way back from the brink. Journal of Environmental Economics and Management 42 (2), 156–182.
Settle, C., Crocker, T.D., Shogren, J.F., 2002. On the joint determination of biological and economic systems. Ecological Economics

42 (1–2), 301–311.
Shogren, J.F., 2000. Risk reductions strategies against the ‘‘explosive invader’’. In: Perrings, C., Williamson, M., Dalmazzone, S.

(Eds.), The Economics of Biological Invasions. Edward Elgar, Northhampton, MA.
Sharov, A.A., Liebhold, A.M., 1998. Bioeconomics of managing the spread of exotic pest species with barrier zones. Ecological

Applications 8, 833–845.
Tahvonen, O., Salo, S., 1996. Nonconvexities in optimal pollution accumulation. Journal of Environmental Economics and

Management 31 (2), 160–177.
Zavaleta, E., 2000. The economic value of controlling an invasive shrub. Ambio 29 (8), 462–467.

D. Finnoff et al. / Resource and Energy Economics 32 (2010) 534–550550

http://www.wam.umd.edu/126houdini/cwp.html
http://www.wam.umd.edu/126houdini/cwp.html

	Control and the management of a spreading invader
	Introduction
	Dynamics of a spreading invader
	Decision model
	Optimal management
	Optimal solutions

	Static management

	Conclusion
	Acknowledgments
	Appendix A
	Application data

	References


